首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
废物处理   1篇
环保管理   10篇
综合类   2篇
基础理论   6篇
污染及防治   13篇
评价与监测   10篇
社会与环境   1篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1965年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m?2 h?1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m?2 h?1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize?>?cowpea?>?rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.  相似文献   
2.
3.
Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75–1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare.  相似文献   
4.

Estuarine ecosystems of the Bay of Bengal, India, are considered as the most productive environment, which have been persistently threatened by substantial anthropogenic activity. This study aims to investigate the metal contamination in the sediment of two estuaries and possible biomagnifications in the indigenous edible oyster Saccostrea cucullata and related health hazards due to its consumption. The accumulative ecological risks indicated that the sediment is moderate to strongly contaminated with cadmium and lead. The sediment pollution index and pollution load index suggested that the sediment possesses a little ecological stress on the exposed flora and fauna. The statistical interpretation highlights the most metals which have a similar source of origin and are bound to the finer fractions of the sediment, except nickel. Bioaccumulation of sediment-associated Cu and Zn in oyster reflects their potential biomagnifications through aquatic food chain. HPI range was below the critical limit of safe human consumption. The non-carcinogenic (THQ) and carcinogenic (CR) health hazards were estimated from the PTDI provided by USEPA. Except Cr, Hg and Zn, the THQ of all other metals was > 1 suggesting detrimental non-carcinogenic health effects on humans. The TCR of Cr and Cd above safety limit indicates the exposed population might be under severe carcinogenic threat due to those metals.

  相似文献   
5.
Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty’s analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under “poor,” “moderate,” “good,” and “very good” groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.  相似文献   
6.
7.
Biomarkers and low-molecular weight polyaromatic compounds have been extensively studied for their fate in the environment. They are used for oil spill source identification and monitoring of weathering and degradation processes. However, in some cases, the absence or presence of very low concentration of such components restricts the access of information to spill source. Here we followed the resistance of high-molecular weight sulfur-containing aromatics to the simulated weathering condition of North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The sulfur aromatics in North Sea crude having double bond equivalents (DBE) from 6 to 14 with a mass range 188-674 Da were less influenced even after 6 months artificial weathering. Moreover, the ratio of dibenzothiophenes (DBE 9)/naphthenodibenzothiophenes (DBE 10) was 1.30 and 1.36 in crude oil and 6 months weathered sample, respectively reflecting its weathering stability. It also showed some differences within other oils. Hence, this ratio can be used as a marker of the studied crude and accordingly may be applied for spilled oil source identification in such instances where the light components have already been lost due to environmental influences.  相似文献   
8.
9.
10.
The purpose of this study was to assess certain physiological responses of Lemna minor L. (duckweed) and Allium cepa L. (onion) to aquatic mercury at low concentrations. Following a 96-h exposure of plants to nutrient medium contaminated with known levels of mercuric chloride (HgCl(2)), 0.001 to 4 mg litre(-1) (0.0007 to 2.95 mg Hg litre(-1)) or methyl mercuric chloride (MeHgCl(2)), 0.0001 to 0.1 mg litre(-1) (0.0007 to 0.07 mg Hg litre(-1)), the physiological endpoints measured were the growth of fronds (Lemna minor) or roots (Allium cepa), and catalase and peroxidase activities in both plant assays. The EC(50) for HgCl(2) on the basis of the growth curve of Lemna minor was found to be 2.1 mg litre(-1). HgCl(2) and MeHgCl(2) were lethal to L. minor at concentrations of 4 and 0.01 mg litre(-1), respectively. The range of low concentrations that accelerated growth as well as enzymic activities in L. minor was 0.004 to 0.04 mg litre(-1) for HgCl(2) and 0.001 mg litre(-1) for MeHgCl(2). HgCl(2) and MeHgCl(2) induced maximum enzymic activity in Lemna fronds at concentrations of 0.008 and 0.0005 mg litre(-1), respectively. In Allium roots, catalase activity was accelerated at all the concentrations of HgCl(2) (0.001-2 mg litre(-1)) and MeHgCl(2) (0.0001-0.1 mg litre(-1)) tested. The activity of peroxidase was, however, accelerated by HgCl(2) at concentration range 0.01-1.0 mg litre(-1), or by MeHgCl(2) at 0.001 mg litre(-1). The concentrations of HgCl(2) and MeHgCl(2) that induced the highest enzymic activity in Allium roots were 0.05 mg litre(-1) and 0.001 mg litre(-1), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号